### Neural network based prediction of shear wave velocity for soils

#### Abstract

#### Full Text:

PDF#### References

Sykora, D. W. (1987). Examination of existing shear wave velocity and shear modulus correlations in soils. Department of the Army, Waterways Experiment Station, Corps of Engineers, Miscellaneous, 87-22.

Ohta, Y. & Goto, N. (1978). Empirical shear wave velocity equations in terms of characteristic soil indexes. Earthquake Engineering Structural Dynamic, 6, 167–187.

Pitilakis, K., Raptakis, D., Lontzetidis, K., Tika-Vassilikou, T., & Jongmans, D. (1999). Geotechnical and geophysical description of Euro-Seistests, using field, and laboratory tests and moderate strong ground motions. Journal Earthquake Engineering, 3(3), 381–409.

Piratheepan, P. (2002). Estimating Shear-Wave Velocity from SPT and CPT Data. Master of Science Thesis, Clemson University.

Hasancebi, N., & Ulusay, R. (2007). Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments. Bull. Eng. Geology and the Environment, 66, 203–213.

Dikmen, U. (2009). Statistical correlations of shear wave velocity and penetration resistance for Soils. Journal of Geophysics and Engineering, doi:10.1088/1742-2132/6/1/007.

Marto, A., Soon, T. C., & Kasim, F. (2013). A Correlation of Shear Wave velocity and Standard Penetration Resistance. Electronic Journal of Geotechnical Engineering, 18, 463-471.

Hegazy, Y. A., & Mayne, P. W. (1995). Statistical correlations between VS and cone penetration data for different soil types. Proc., Inter. Symp. On Cone Penetration Testing, CPT ’95, Linkoping, Sweden, 2, 173–178.

Mayne, P. W. & Rix G. J. (1995). Correlations between shear wave velocity and cone tip resistance in natural clays. Japanese Society of Soil Mechanics and Foundation Engineering, 35(2),107-110.

Mayne, P. W. (2006). In situ test calibrations for evaluating soil parameters. Proc., Characterization and Engineering Properties of Natural Soils II, Singapore.

Andrus, R. D., Mohanan, N. P., Piratheepan, P., Ellis, B. S., & Holzer T. L. (2007). Predicting shear- wave velocity from cone penetration resistance. 4th international conference on earthquake geotechnical engineering.

Robertson, P. K. (2009). Interpretation of cone penetration tests – a unified approach. Canadian Geotechnical Journal, 46(11),1337–1355.

Ahmed, S. M. (2017). Correlating the Shear Wave Velocity with the Cone Penetration Test. Proceedings of the 2nd World Congress on Civil, Structural, and Environmental Engineering, Paper No. ICGRE 155, ISSN: 2371-5294, DOI: 10.11159/icgre17.155.

Ismeik, M., & Al-Rawi, O. (2014). Modeling soil specific surface area with artificial neural networks. Geotechnical Testing Journal. 37(4), 1-11. DOI: 10.1520/GTJ20130146

Yilmaz, I. & Kaynar, O. (2011) Multiple regressions, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Systems with Applications. 38, 5958-5966.

Kayadelen, C. (2008). Estimation of effective stress parameter of unsaturated soils by using artificial neural networks. Int. J. Numer. Anal. Meth. Geomech. 32(9), 1087–1106. DOI: 10.1002/nag.660

Das, S. K., & Basudhar, P. K. (2006). Undrained lateral load capacity of piles in clay using artificial neural network. Computers and Geotechnics. 33(8), 454-459.

Cho, S. E. (2009). Probabilistic stability analyses of slopes using the ANN-based response surface. Computers and Geotechnics. 36(5): 787–797. doi:10.1016/j.compgeo.2009.01.003

Dutta, R. K., Dutta, K., & Jeevanandham, S. (2015). Prediction of deviator stress of sand reinforced with waste plastic strips using neural network” Int. J. of Geosynth. and Ground Eng.,1(11), 1-12. DOI 10.1007/s40891-015-0013-7

Nazir, R., Momeni, E., Marsono, K., & Maizir. H. (2015). An artificial neural network approach for prediction of bearing capacity of spread foundations in sand. Jurnal Teknologi. 72(3), 9–14.

Kalinli, A., Acar, M. C., & Gunduz, Z. (2011). New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and ant colony optimization. Engineering Geology. 117(1-2), 29–38. doi:10.1016/j.enggeo.2010.10.002

Kuo, Y. L., Jaksa, M B, Lyamin. A. V., & Kaggwa, W. S. (2009). ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil. Computers and Geotechnics.36(3), 503–516.

Dutta, R. K., Rani, R., & Gnananandarao, T. (2018). Prediction of ultimate bearing capacity of skirted footing resting on sand using artificial neural networks. Journal of Soft Computing in Civil Engineering, 2(4), 34-46.

Gnananandarao, T., Dutta, R.K., & Khatri, V.N. (2017, December). Artificial neural networks based bearing capacity prediction for square footing resting on confined sand”, Indian Geotechnical Conference, IIT Guwahati, Assam, India.

Gnananandarao, T., Dutta, R. K. and Khatri, V. N. (2016),”Application of artificial neural network to predict the settlement of shallow foundations on cohesionless soils”, Indian Geotechnical Conference, 15-17 December, IIT Madras, Chennai, India.

Dutta, R. K., Dutta, K., & Kumar, Sai. S. (2016). Prediction of horizontal stress in underground excavations using artificial neural networks", International Journal of Civil Engineering and Applications, 6(1), http://rfgindia.com/Journals-Details.aspx?JRNLID=38

Dutta, R. K., & Gupta, R. (2016). Prediction of unsoaked and soaked California bearing ratio from index properties of soil using artificial neural networks", International Journal of Civil Engineering and Applications, 6(1), http://rfgindia.com/Journals-Details.aspx?JRNLID=38

https://earthquake.usgs.gov/research/cpt/data/alameda/table/ accessed 25 December 2017.

Chen, D. S., Jain, R. C. (1994). A robust backpropagation learning algorithm for function approximation. IEEE Trans. Neural Netw. 5 (3), 467–479

Mayne, P.W., Coop, M.R., Springman, S., Huang, A.-B., & Zornberg (2009). Geo material behavior and testing. In 17th International Conference on Soil Mechanics and Geotechnical Engineering, ICSMGE, 2777-2872.

Boger. Z., & Guterman, H. (1997). Knowledge extraction from artificial neural network models. IEEE International Conference on Computational Cybernetics and Simulation. 4, 3030 – 3035.

Berry, M. J. A., & Linoff G. (1997). Data Mining Techniques. New york: John Wiley & Sons,.

Blum, A. (1992). Neural Networks in C++. New york: Wiley.

Sibi, P., Jones, S. A., Siddarth P. (2013). Analysis of different activation functions using back propagation neural networks. Journal of Theoretical and Applied Information Technology, 47(3), 1264-1268.

Ito, Y. (1994). Approximation capabilities of layered neural networks with sigmoid units on two layers. Neural Compute, 6(6), 1233–1243.

Witt, S. F. & Witt, C. A. (1995). Forecasting tourism demand: A review of empirical research. International Journal of Forecasting, 2(3), 447 – 490.

Armstrong, J. S. (2001). Principles of Forecasting. Boston: Kluwer Academic Publishers.

Garson, G. D. (1991). Interpreting neural-network connection weights. AI Expert, 6(4), 46–51.

Olden, J. D., & Jackson, D.A. (2002). Illuminating the “black box.: a randomization approach for understanding variable contributions in artificial neural networks”, Ecological Modeling, 154, 135-150.

### Refbacks

- There are currently no refbacks.